Lattice Gauge Theory in the Proton Driver Era

Andreas Kronfeld Proton Driver Workshop Fermilab October 6-9, 2004

Outline

- Idiosyncratic lightning review of lattice QCD
- f_{π} , f_{K} and light quark masses
- Homework for Yuval, Uli, etc.
- Assumptions for future
- Projections (unless, as I hope, time runs out)

Lattice QCD

A Multi-Scale Problem

- QCD is a multi-scale problem
 - $= \Lambda$: the characteristic scale of the strong interaction
 - $\equiv m_q$: light quark masses $m_q \ll \Lambda$: good for u, d, (s)
 - $= m_Q$: heavy quark masses $m_Q \gg \Lambda$: good for t, b, (c)
 - $= a^{-1}$: ultraviolet cutoff, always needed in QFT
 - $= L^{-1}$: infrared cutoff, often helpful in QFT

• Ken Wilson said, integrate the functional integral numerically (with finesse and brute force):

$$\int \mathcal{D}A \,\mathcal{D}\psi \mathcal{D}\bar{\psi} \,\bar{\psi}_u \gamma_5 \psi_d(x) \bar{\psi}_d \gamma_5 \psi_u(y) \,e^{-S_g - \bar{\psi}M\psi} =$$

$$\int \mathcal{D}A \,\operatorname{tr}[G_d(x,y)\gamma_5 G_u(y,x)\gamma_5] \,\det M \,e^{-S_g}$$

$$M = [D + m]_{lat}$$
 $S_g = lattice gauge action$

- $G = M^{-1}$ (quark propagators): expensive
- det M (sea quark loops): very expensive

Systematics

- MC treats Λ exactly, up to statistical errors.
- Control systematics with effective field theories:
 - $= m_{q} = rm_{s} > m_{d}$: chiral perturbation theory (χPT)
 - \equiv *L* < ∞: general EFT of hadrons; χPT
 - $\equiv a \neq 0$: Symanzik effective field theory
 - $= m_O a \sim 1$: HQET, NRQCD [hep-lat/0310063]
- verify with numerical data, then extrapolate

Quenched Approximation

Full QCD has (expensive) quark loops.

- Replace det *M* with 1, and compensate by shifting bare gauge coupling and bare masses. "Dielectric".
- Arguably OK if all light quarks had mass $m_q \sim \Lambda$.
- The Main Ring era: not even the Main Injector era.

Chiral Extrapolation

Virtual quark loops:
$$B \to \left\{ \begin{array}{l} B^*\pi \\ B_s^*K \\ B_{(s)}^*\eta \end{array} \right\} \to B.$$

- Loops yield non-analytic behavior, e.g., $m_{\pi}^2 \ln m_{\pi}^2$.
- Extrapolation needs small enough m_a .

Lattice Fermions

- Naïve: 16 species per field, called "tastes".
- Wilson: 1 taste (flavor), but hard chiral symmetry breaking \Rightarrow fine tuning $\Rightarrow m_q > 0.7 m_s$ [JLQCD, QCDSF, ...]. Twisted mass helps, but new.
- Staggered: still 4 tastes per field, but remnant of chiral symmetry $\Rightarrow m_q > 0.15 m_s$ [MILC].
- Ginsparg-Wilson (domain wall or overlap): flavor simple, full chiral symmetry. More expensive—but relevant to future *K* calculations.

The Berlin Wall

$$\cos t \propto \left(\frac{m_{\rm V}^2}{m_{\rm PS}^2}\right)^3 L^{4+1} \; a^{-(4+3)}$$

- cost for Wilson
 - \equiv 3 times faster
- cost for staggered
- Plot from Jansen, who had input from Ukawa &
 Gottlieb

hep-lat/0311039

Staggered Quarks

- Staggered fermions have always been fast.
- Discretization effects $O(a^2)$, but "large".
- Traced to "taste-changing" interactions.
- Systematically removed by Orginos & Toussaint:
 - = the "Fat7 action"
- Remaining $O(a^2)$ removed by Lepage
 - = the "asqtad action": $O(\alpha_s a^2)$, $O(a^4)$ and "small".

Gold-plated Quantities

- Some quantities are under much better control:
 - = 1 hadron in the initial state & 0 or 1 in the final state;
 - = stable, or narrow and not too close to threshold.
- Chiral extrapolation must also be under control!
- D^*, ϕ , ... not gold-plated, but perhaps not bad. η ?
- (almost) elastic ρ , Δ , $K \rightarrow \pi\pi$ much, much harder.
- No experience with $\langle H|T O_1(x) O_2(0)|H\rangle$

Unquenched vs. Quenched

The MILC Ensembles

- MILC Collaboration = dozen or so physicists at Arizona, UCSB, Colorado, FSU-SCRI/APS, Indiana, Pacific, Utah, Washington U. (St. Louis)
- Improved staggered quarks (asqtad action)
- Sea quark loops (det M) for 2 + 1 flavors
- a = 1/8, 1/11 fm (also 1/6 fm, but omitted)
- Many (valence and sea) m_q down to $0.15 m_s$
- Several hundred lattice gauge fields per ensemble

- Freely available over the internet.
- Several groups started looking at light hadrons (MILC), hadrons with bottom quarks (HPQCD), hadrons with charmed quarks (Fermilab).
- All of the QCD scale was being probed.
- A consistent picture emerged: after tuning $1 + n_f$ parameters, we checked 9 other mass splittings and decay constants.

Tune Bare Couplings

- pick $g_0^2(a)$ and use $\Delta m_{\Upsilon}(2S-1S)$ to deduce a
 - = not very sensitive to quark masses, even m_b
- light (u, d) and strange masses tuned to (m_{π}^2, m_K^2)
- charmed mass tuned to (spin-averaged) m_{Ds}
- bottom mass tuned to $m_{\Upsilon}(1S)$
- Useful to compare quenched vs. unquenched.

- Because staggered quarks come in four tastes, we have used $[\det_4 M]^{1/4}$ for $\det_1(\not D+m)$.
- $\det_4 M^{1/4}$ looks non-local and, hence, terrifying.
- However:
 - = Correct in perturbation theory.
 - Chiral anomalies incorporated correctly.
 - = Long-distances well described by a version of χPT designed to handle it.
- "Not proven," but several positive indications.

New Investigations

- Adams
 - = rigorous mathematical proof in a *related* context
- Davies, Follana, & Hart; Dürr & Hölbling
 - = 4-fold degeneracy of eigenvalues emerge; topology
- Bunk et al.
 - = $M^{1/4}$ is non-local, but don't know about $[\det_{\Delta} M]^{1/4}$
- Neuberger
 - = 6-d framework to test locality

Summary So Far

- Lattice QCD with improved staggered quarks agrees with Nature for 5+9 gold-plated quantities.
- Only improved staggered fermions can achieve the following (in the near term):
 - = 2+1 flavors of sea quark
 - = light enough quarks for chiral perturbation theory
- Very promising for B, D, K, and π physics.

 f_{π} and f_{K}

Chiral Extrapolation

- Dots at 0.04 are experimental.
- Error bars are lattice QCD.
- Linear extrap (by eye).
- Gasser-Leutwyler χlog gets closer (solid).
- Sharpe-Shoresh χlog even closer (dashed).

• Finally, χPT can be modified to incorporate the 4 tastes and the 1/4 root [Aubin & Bernard].

One fit to all quark mass combos & both lattice spacings!

- Four extrapolations:
 - \equiv linear
 - \equiv continuum χ PT, assuming $m_q^{\rm val} = m_q^{\rm sea}$
 - \equiv continuum χ PT, with $m_q^{\rm val} \neq m_q^{\rm sea}$
 - $= \chi PT$ with taste-symmetry breaking and
- Successively more accurate.
- Hard to reconcile with a non-local underlying theory.

Results

•
$$f_{\pi} = 129.5(0.9)(3.4)(0.0) \text{ MeV}$$

hep-lat/0407028

•
$$f_K = 156.6(1.0)(3.5)(0.1) \text{ MeV}$$

hep-lat/0407028

•
$$f_K/f_{\pi} = 1.210(4)(13)(1)$$

hep-lat/0407028

•
$$m_s(2 \text{ GeV}) = 76(0)(3)(0)(7) \text{ MeV}$$

hep-lat/0405022

•
$$2m_s/(m_u + m_d) = 27.4(1)(4)(1)$$

hep-lat/0405022

•
$$m_u/m_d = 0.43(0)(1)(8)$$

hep-lat/0407028

• statistics, stagyPT, EM, matching

Homework for Yuval, Uli, ...

Classify QCD

- Gold-plated & silver-plated matrix elements
 - = fundamental QCD parameters: α_s , m_q
- Much harder: (nearly) elastic decays, e.g., $K \rightarrow \pi\pi$
- Ideas needed (QCD + QED + clever sources?)
 - = hadronic light-by-light for (g-2)
 - $= K \rightarrow \pi \gamma * \gamma * \text{ for } K \rightarrow \pi \mu \mu$
- Impossible, e.g., $B \rightarrow \pi\pi$ (because inelastic)

Assumptions for the Proton Driver Era

- When: 6-12 years hence $\Rightarrow 2^4 2^8 \times \text{better CPU}$
 - = perhaps more factors of 2 for better funding & ideas
- Assume basic paradigm remains: Monte Carlo + chiral perturbation theory.
- Worst case: staggered fermions are found to have a fatal flaw. Then we will use CPU to get back to few-% errors with other fermion methods.
- Best case: can reduce statistical errors by ÷ 10
 - = assume systematics scale
- Assume matching improves (where needed).

Semileptonic Projections

Two Targets

- $|V_{ud}|_{PDG} = 0.9738(0)(5) \rightarrow (?)(2)$
- $|V_{us}|_{KTeV} = 0.2252(8)(26) \rightarrow (6)(6)$
 - = via leptonic decays, MILC á la Marciano [hep-ph/0402299: f_K/f_{π} + PDG | V_{ud} |] find | V_{us} | = 0.2219(26)
 - = if errors go down by a factor of five, target is reached
- Semileptonic decays perhaps more promising

$D \rightarrow \pi, K; B \rightarrow \pi, D$

CKM matrix with $n_f = 3$ LQCD (preliminary)

$$\begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ N/A & N/A & 3.6(5)(4)(3) \times 10^{-3} \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \\ 0.24(1)(2)(2) & 0.97(4)(8)(2) & 3.8(1)(1)(6) \times 10^{-2} \\ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \\ N/A & N/A & N/A \end{pmatrix}$$

4/9 being determined with $n_f = 3$ LQCD.

LQCD unitarity check!

Experimental errors

$$(|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2)^{1/2} = 1.00(4)(8)(2)$$

slide from talk at Lattice 2004

• $B \rightarrow D$ better (1.5% systematic instead of 10%) because of zero-recoil double-ratio

$$|h_{+}^{B\to D}|^{2} = \frac{\langle B|\bar{b}\gamma_{4}c|D\rangle\langle D|\bar{c}\gamma_{4}b|B\rangle}{\langle B|\bar{b}\gamma_{4}b|B\rangle\langle D|\bar{c}\gamma_{4}c|D\rangle}$$

- heavy-quark symmetry says form factor is ≈ 1
- double ratio ensures that errors scale as $h_+ 1$
 - = 1.5% is actually 17% of a 7.5% deviation
- works with any symmetry, e.g., isospin, SU(3)
- $K \rightarrow \pi, n \rightarrow p, \pi \rightarrow \pi, K \rightarrow K$

$K \rightarrow \pi$

Now the precise zero-recoil double ratio is

$$|f_0^{K\to D}(q_{\max}^2)|^2 = \frac{\langle K|\bar{s}\gamma_4 u|\pi\rangle\langle\pi|\bar{u}\gamma_4 s|K\rangle}{\langle K|\bar{s}\gamma_4 s|K\rangle\langle\pi|\bar{u}\gamma_4 u|\pi\rangle}$$

APE has ‰ precision in quenched QCD

- But one needs $f_+(0) = f_0(0)$
 - = APE calculates f'_{+} and $f'_{+} f'_{0}$ with ~20% precision
- $f(0) = 1 + 0_{AG} + known_{\chi PT} + O\left(\left(\frac{m_K^2 m_{\pi}^2}{8\pi^2 f_{\pi}^2}\right)^2\right)$
- About 3%; Leutwyler & Roos and APE find -4%

$$\pi^+ \rightarrow \pi^0$$

- Same methods would apply
- q^2 extrapolations negligible
- Error is a fraction of $\left(\frac{m_{\pi^+}^2 m_{\pi^0}^2}{8\pi^2 f_{\pi}^2}\right)^2 \sim 10^{-6}$
- But need to worry about
 - = isospin breaking, also in sea quarks (for π^0 - η mixing)
 - = structure-dependent radiative corrections

$$K^0 \rightarrow K^+$$

- BR(K_S) ~ 10^{-11} ; BR(K_L) ~ 5×10^{-9}
- q^2 extrapolations again negligible
- Error is a fraction of $\left(\frac{m_{K^0}^2 m_{K^+}^2}{8\pi^2 f_\pi^2}\right)^2 \sim 10^{-5}$
- But need to worry about
 - = isospin breaking, but only for valence quarks
 - = structure-dependent radiative corrections

Chiral Perturbation Theory

- In many cases the matrix element *you* want is one that, to lattice QCD, is not gold-plated.
- Perhaps χPT can be used more aggressively.
 - = use gold-plated quantities + lattice QCD to determine chiral parameters [see MILC's]
 - = use χ PT for *your* phenomenology
 - = plug in lattice-derived chiral parameters

 ε'/ε and $\Delta I = 1/2$ Rule

Baryons

Baryons in LatQCD

- Baryons always have larger statistical errors than (pseudoscalar) mesons
- : crosschecks of quark masses, CKM, ...
 - = e.g., m_S from MILC-HPQCD yields m_Ω within 0.5 σ
 - $= |V_{us}|$ from hyperon decay less precise than from K_{l3}
- moments of *pdf*s should be gold-plated
- nucleon decay constant

Tests

D Decays

CKM drops out of

$$\frac{1}{\Gamma_{D_s \to l\nu}} \frac{d\Gamma_{D \to K l\nu}}{dE_K} \propto \left| \frac{f_+^{D \to K}(E_K)}{f_{D_s}} \right|^2$$

$$\frac{1}{\Gamma_{D\to l\nu}} \frac{d\Gamma_{D\to\pi l\nu}}{dE_{\pi}} \propto \left| \frac{f_{+}^{D\to\pi}(E_{\pi})}{f_{D}} \right|^{2}$$

- Pure tests of non-perturbative QCD \Leftarrow CLEO-c
- Functions of energy
- Similarly for *K* decays

B from [Glasgow/Fermilab]

• with quarkonium baseline (preliminary)

$$= m_{B_c} = 6.307 \pm 0.002^{+0.000}_{-0.010} \text{ GeV}$$

- \equiv systematic dominated by the B_c Darwin correction
- with heavy-light baseline (preliminary)

$$= m_{B_c} = 6.253 \pm 0.017^{+0.030 \sim 50}_{-0.000} \text{ GeV}$$

- \equiv systematic dominated by the D_{c} Darwin correction
- DØ and CDF will reduce error $400 \rightarrow 10 \text{s MeV}$